尿道炎和阴道炎有什么区别| 14年是什么年| 报应是什么意思| 区块链技术是什么| 喷字去掉口念什么| 什么什么的阳光| 咿呀咿呀哟是什么歌| 什么是包茎| 屁股里面疼是什么原因| 女生两个月没来月经是什么原因| 财大气粗是什么意思| 土龙是什么| 急性牙髓炎吃什么药| 痛风用什么药治疗最好| 梦字五行属什么| 一个点是什么字| ad是什么缩写| 睡醒后口干口苦是什么原因| 5月5日什么星座| 胆管炎吃什么药| mrmrs是什么牌子| 纯天然无公害什么意思| hp是阳性什么意思| 口若悬什么| 阿胶糕什么时候吃最好| 商字五行属什么| 舌头有裂纹是什么原因| 一个月一个非念什么| 关节炎用什么药| 龋坏是什么意思| 额头长痘痘是什么原因| mep是什么意思| verde是什么颜色| 拉垮什么意思| 激素六项都是查什么| 男人身体虚吃什么补| 六字箴言是什么意思| 海里有什么动物| wing是什么意思| 花胶适合什么人吃| 老年人生日送什么礼物| 木薯是什么东西图片| 肚脐周围疼痛是什么原因| 衔接班是什么意思| 九月份有什么节日| 孕早期是什么时候| 家是什么| 有容乃大什么意思| 磁共振和ct有什么区别| 不爱说话的人是什么性格| 血脂高不能吃什么| 白露是什么季节的节气| 肾结石可以吃什么食物| 世界七大奇迹分别是什么| 急性胃肠炎用什么药| 孤僻是什么意思| 韩信属什么生肖| 填充鼻子最好的材料是什么| 二战时期是什么时候| 磨牙缺什么| 荆州是现在的什么地方| 香槟是什么酒| 凉皮是用什么做的| 什么水果降火| 李子什么时候成熟| 什么是平舌音什么是翘舌音| 但微颔之的之是什么意思| 医学ac是什么意思| 百年好合是什么意思| 生育津贴是什么| 生意盎然什么意思| mcv偏低是什么意思| 93年属什么的生肖| 平均血小板体积偏低是什么意思| 10月18日什么星座| 浅笑是什么意思| 七夕节干什么| 痰湿吃什么中成药| 克罗心是什么档次| 荨麻疹擦什么药| 胆囊萎缩是什么原因| nsaids是什么药| jomalone是什么牌子| swisse是什么药| 粉色是什么颜色| 乳头痒什么原因| 北京晚上有什么好玩的景点| 肝硬化早期吃什么药| 狗可以吃什么水果| 奥地利讲什么语言| 甲状腺结节挂什么科室| 知觉是什么意思| 做梦梦到老婆出轨是什么意思| 假饵适合钓什么鱼| 1993年属什么| 抽动症是什么原因引起的| 煤油对人体有什么危害| 吃什么能快速减肥| 肠胃不好适合喝什么茶| 0是偶数吗为什么| 生殖器疱疹是什么原因引起的| 血小板体积偏低是什么原因| 梦到墓地什么预兆| 面基是什么意思啊| 宫颈炎是什么原因引起的| 孕检nt主要检查什么| 刁子鱼是什么鱼| 大米发霉是什么样子| 油腻腻的什么| 鱼泡是鱼的什么器官| 乳晕是什么意思| 直肠指检能检查出什么| 压测是什么意思| 5月13日是什么星座| 器质性心脏病是什么意思| 小蜗牛吃什么| 门庭若什么| 幽门螺旋杆菌吃什么药| 申时是什么时间| 九斗一簸箕有什么说法| 吃什么最容易消化| 喝红茶对身体有什么好处| 破绽是什么意思| 久站腰疼是什么原因| 感冒为什么不能吃鸡蛋| 中午12点到1点是什么时辰| 腿有淤青是什么原因| 黑胡椒和白胡椒有什么区别| 梦见买鞋子是什么意思| 蚩尤姓什么| 截胡什么意思| 浑身疼痛什么原因| 尿酸高是什么病| 缺铁吃什么药| msi是什么比赛| 脾胃不好挂什么科| 身上出现白块什么原因| 潘海利根香水什么档次| 孕妇头疼可以吃什么药| lr是什么意思| 手指甲有竖纹什么原因| 什么是性病| 肝痛在什么位置| 二甲双胍不能和什么药一起吃| 一杆进洞叫什么球| 子宫前位什么姿势易孕| 五彩斑斓的意思是什么| 野生黄芪长什么样子的图片| 低血压高是什么原因| 阿托品属于什么类药物| 过敏喝什么药| 嗳气是什么原因引起的| 卡不当什么意思| 吃薄荷对人身体有什么好处| 什么是石斛| 凝望什么| 不动产是什么意思| 这是什么车| 左肺上叶肺大泡是什么意思| 肝功能查什么| 日本旅游买什么东西最划算| 早餐吃什么最减肥瘦身| 凉拖鞋什么材质的好| 不苟言笑的苟是什么意思| 哮喘什么症状| 男人前列腺在什么位置| 兆后面是什么单位| 心肌供血不足是什么原因造成的| 胸闷要做什么检查| 蚯蚓用什么呼吸| 今年是什么生肖年| 大学辅导员是干什么的| 巧囊是什么原因形成的| 梦见手抓屎是什么意思| 素来是什么意思| 10月29日是什么星座| 尿潜血阳性是什么意思| 身份证最后一位x是什么意思| 阴道发痒是什么原因| ivf是什么意思| 手五行属什么| 吃生姜对身体有什么好处和坏处| 阴道流黄水是什么病| 手指关节疼是什么原因| 天恩是什么意思| 咽炎咳嗽吃什么药| 干巴爹什么意思| 返图是什么意思| 缪在姓氏中读什么| 一直咳嗽吃什么药| 内膜b型是什么意思啊| 善莫大焉是什么意思| 什么命要承受丧子之痛| 为什么叫清明上河图| 为什么一吃辣的就拉肚子| 红斑狼疮是什么症状能治好吗| 什么时候看到的月亮最大| 全身spa是什么意思| 精索炎吃什么药最好| 头晕恶心想吐挂什么科| 关节外科主要看什么| skp是什么品牌| 2006属什么生肖| 肠炎吃什么药效果好| 新婚志喜是什么意思| 胸疼是什么原因引起的| 降钙素原偏高说明什么| 字号是什么意思| 孕妇吃西红柿对胎儿有什么好处| 豆五行属什么| 什么叫平仓| 什么是工作| 左眼皮一直跳什么原因| 来加贝念什么| 菱角是什么意思| 为什么身上一热就痒| 为什么第一次没有出血| 倒春寒是什么意思| 丝芙兰是什么品牌| 择期手术是什么意思| 甲字五行属什么| 鼹鼠吃什么| 梁伟文 为什么叫林夕| 静脉曲张是什么样子| 马云是什么大学毕业的| 女人大腿内侧黑是什么原因引起的| 栀子有什么作用与功效| 办港澳通行证需要带什么| 车前草有什么功效| 猫癣传染人什么症状| 打胰岛素是什么病| 脾围是什么意思| 什么姿势容易怀孕| 甲亢能吃什么| 厘清是什么意思| 晏殊字什么| 属鸡本命佛是什么佛| 六月份是什么季节| 不停的打嗝是什么原因| 糖尿病是什么原因造成的| pm是什么职位| 脂蛋白磷脂酶a2高说明什么| 胃疼看病挂什么科| 喜悦之情溢于言表什么意思| 地中海贫血是什么原因引起的| 什么是闰月| 协警是干什么的| 喝劲酒有什么好处| 三高可以吃什么水果| 鸡屁股叫什么| 化疗后吃什么食物最好| 为什么晚上不能照镜子| 顶臀径是指什么| 藏红花什么人不能喝| 淋巴结是什么病| 汞中毒有什么症状| 大牙什么时候换| 听调不听宣什么意思| 黑鱼吃什么| 孕妇能喝什么茶| 潜血阴性是什么意思| 匆匆那年是什么意思| tg是什么| 眩晕看什么科| 百度Jump to content

93年什么命

From Wikipedia, the free encyclopedia
百度 ■数据滴滴顺风车春节假期共运送370万人次据滴滴发布的顺风车数据,今年是顺风车服务春运第三年,春节假期期间共运送370万人次。

Finite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures, which have a finite universe.

Since many central theorems of model theory do not hold when restricted to finite structures, finite model theory is quite different from model theory in its methods of proof. Central results of classical model theory that fail for finite structures under finite model theory include the compactness theorem, G?del's completeness theorem, and the method of ultraproducts for first-order logic (FO). These invalidities all follow from Trakhtenbrot's theorem.[1]

While model theory has many applications to mathematical algebra, finite model theory became an "unusually effective"[2] instrument in computer science. In other words: "In the history of mathematical logic most interest has concentrated on infinite structures. [...] Yet, the objects computers have and hold are always finite. To study computation we need a theory of finite structures."[3] Thus the main application areas of finite model theory are: descriptive complexity theory, database theory and formal language theory.

Axiomatisability

[edit]

A common motivating question in finite model theory is whether a given class of structures can be described in a given language. For instance, one might ask whether the class of cyclic graphs can be distinguished among graphs by a FO sentence, which can also be phrased as asking whether cyclicity is FO-expressible.

A single finite structure can always be axiomatized in first-order logic, where axiomatized in a language L means described uniquely up to isomorphism by a single L-sentence. Similarly, any finite collection of finite structures can always be axiomatized in first-order logic. Some, but not all, infinite collections of finite structures can also be axiomatized by a single first-order sentence.

Characterisation of a single structure

[edit]

Is a language L expressive enough to axiomatize a single finite structure S?

Single graphs (1) and (1') having common properties.

Problem

[edit]

A structure like (1) in the figure can be described by FO sentences in the logic of graphs like

  1. Every node has an edge to another node:
  2. No node has an edge to itself:
  3. There is at least one node that is connected to all others:

However, these properties do not axiomatize the structure, since for structure (1') the above properties hold as well, yet structures (1) and (1') are not isomorphic.

Informally the question is whether by adding enough properties, these properties together describe exactly (1) and are valid (all together) for no other structure (up to isomorphism).

Approach

[edit]

For a single finite structure it is always possible to precisely describe the structure by a single FO sentence. The principle is illustrated here for a structure with one binary relation and without constants:

  1. say that there are at least elements:
  2. say that there are at most elements:
  3. state every element of the relation :
  4. state every non-element of the relation :

all for the same tuple , yielding the FO sentence .

Extension to a fixed number of structures

[edit]

The method of describing a single structure by means of a first-order sentence can easily be extended for any fixed number of structures. A unique description can be obtained by the disjunction of the descriptions for each structure. For instance, for two structures and with defining sentences and this would be

Extension to an infinite structure

[edit]

By definition, a set containing an infinite structure falls outside the area that FMT deals with. Note that infinite structures can never be discriminated in FO, because of the L?wenheim–Skolem theorem, which implies that no first-order theory with an infinite model can have a unique model up to isomorphism.

The most famous example is probably Skolem's theorem, that there is a countable non-standard model of arithmetic.

Characterisation of a class of structures

[edit]

Is a language L expressive enough to describe exactly (up to isomorphism) those finite structures that have certain property P?

Set of up to n structures.

Problem

[edit]

The descriptions given so far all specify the number of elements of the universe. Unfortunately most interesting sets of structures are not restricted to a certain size, like all graphs that are trees, are connected or are acyclic. Thus to discriminate a finite number of structures is of special importance.

Approach

[edit]

Instead of a general statement, the following is a sketch of a methodology to differentiate between structures that can and cannot be discriminated.

  1. The core idea is that whenever one wants to see if a property P can be expressed in FO, one chooses structures A and B, where A does have P and B doesn't. If for A and B the same FO sentences hold, then P cannot be expressed in FO. In short:
    and
    where is shorthand for for all FO-sentences α, and P represents the class of structures with property P.
  2. The methodology considers countably many subsets of the language, the union of which forms the language itself. For instance, for FO consider classes FO[m] for each m. For each m the above core idea then has to be shown. That is:
    and
    with a pair for each and α (in ≡) from FO[m]. It may be appropriate to choose the classes FO[m] to form a partition of the language.
  3. One common way to define FO[m] is by means of the quantifier rank qr(α) of a FO formula α, which expresses the depth of quantifier nesting. For example, for a formula in prenex normal form, qr is simply the total number of its quantifiers. Then FO[m] can be defined as all FO formulas α with qr(α) ≤ m (or, if a partition is desired, as those FO formulas with quantifier rank equal to m).
  4. Thus it all comes down to showing on the subsets FO[m]. The main approach here is to use the algebraic characterization provided by Ehrenfeucht–Fra?ssé games. Informally, these take a single partial isomorphism on A and B and extend it m times, in order to either prove or disprove , dependent on who wins the game.

Example

[edit]

We want to show that the property that the size of an ordered structure A = (A, ≤) is even, can not be expressed in FO.

  1. The idea is to pick A ∈ EVEN and B ∉ EVEN, where EVEN is the class of all structures of even size.
  2. We start with two ordered structures A2 and B2 with universes A2 = {1, 2, 3, 4} and B2 = {1, 2, 3}. Obviously A2 ∈ EVEN and B2 ∉ EVEN.
  3. For m = 2, we can now show* that in a 2-move Ehrenfeucht–Fra?ssé game on A2 and B2 the duplicator always wins, and thus A2 and B2 cannot be discriminated in FO[2], i.e. for every α ∈ FO[2].
  4. Next we have to scale the structures up by increasing m. For example, for m = 3 we must find an A3 and B3 such that the duplicator always wins the 3-move game. This can be achieved by A3 = {1, ..., 8} and B3 = {1, ..., 7}. More generally, we can choose Am = {1, ..., 2m} and Bm = {1, ..., 2m−1}; for any m the duplicator always wins the m-move game for this pair of structures*.
  5. Thus EVEN on finite ordered structures cannot be expressed in FO.

(*) Note that the proof of the result of the Ehrenfeucht–Fra?ssé game has been omitted, since it is not the main focus here.

Zero-one laws

[edit]

Glebski? et al. (1969) and, independently, Fagin (1976) proved a zero–one law for first-order sentences in finite models; Fagin's proof used the compactness theorem. According to this result, every first-order sentence in a relational signature is either almost always true or almost always false in finite -structures. That is, let S be a fixed first-order sentence, and choose a random -structure with domain , uniformly among all -structures with domain . Then in the limit as n tends to infinity, the probability that Gn models S will tend either to zero or to one:

The problem of determining whether a given sentence has probability tending to zero or to one is PSPACE-complete.[4]

A similar analysis has been performed for more expressive logics than first-order logic. The 0-1 law has been shown to hold for sentences in FO(LFP), first-order logic augmented with a least fixed point operator, and more generally for sentences in the infinitary logic , which allows for potentially arbitrarily long conjunctions and disjunctions. Another important variant is the unlabelled 0-1 law, where instead of considering the fraction of structures with domain , one considers the fraction of isomorphism classes of structures with n elements. This fraction is well-defined, since any two isomorphic structures satisfy the same sentences. The unlabelled 0-1 law also holds for and therefore in particular for FO(LFP) and first-order logic.[5]

Descriptive complexity theory

[edit]

An important goal of finite model theory is the characterisation of complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them.

Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory.

Some well-known complexity classes are captured by logical languages as follows:

  • In the presence of a linear order, first-order logic with a commutative, transitive closure operator added yields L, problems solvable in logarithmic space.
  • In the presence of a linear order, first-order logic with a transitive closure operator yields NL, the problems solvable in nondeterministic logarithmic space.
  • In the presence of a linear order, first-order logic with a least fixed point operator gives P, the problems solvable in deterministic polynomial time.
  • On all finite structures (regardless of whether they are ordered), Existential second-order logic gives NP (Fagin's theorem).[6]

Applications

[edit]

Database theory

[edit]

A substantial fragment of SQL (namely that which is effectively relational algebra) is based on first-order logic (more precisely can be translated in domain relational calculus by means of Codd's theorem), as the following example illustrates: Think of a database table "GIRLS" with the columns "FIRST_NAME" and "LAST_NAME". This corresponds to a binary relation, say G(f, l) on FIRST_NAME × LAST_NAME. The FO query , which returns all the last names where the first name is 'Judy', would look in SQL like this:

select LAST_NAME 
from GIRLS
where FIRST_NAME = 'Judy'

Notice, we assume here, that all last names appear only once (or we should use SELECT DISTINCT since we assume that relations and answers are sets, not bags).

Next we want to make a more complex statement. Therefore, in addition to the "GIRLS" table we have a table "BOYS" also with the columns "FIRST_NAME" and "LAST_NAME". Now we want to query the last names of all the girls that have the same last name as at least one of the boys. The FO query is , and the corresponding SQL statement is:

select FIRST_NAME, LAST_NAME 
from GIRLS
where LAST_NAME IN ( select LAST_NAME from BOYS );

Notice that in order to express the "∧" we introduced the new language element "IN" with a subsequent select statement. This makes the language more expressive for the price of higher difficulty to learn and implement. This is a common trade-off in formal language design. The way shown above ("IN") is by far not the only one to extend the language. An alternative way is e.g. to introduce a "JOIN" operator, that is:

select distinct g.FIRST_NAME, g.LAST_NAME 
from GIRLS g, BOYS b
where g.LAST_NAME=b.LAST_NAME;

First-order logic is too restrictive for some database applications, for instance because of its inability to express transitive closure. This has led to more powerful constructs being added to database query languages, such as recursive WITH in SQL:1999. More expressive logics, like fixpoint logics, have therefore been studied in finite model theory because of their relevance to database theory and applications.

[edit]

Narrative data contains no defined relations. Thus the logical structure of text search queries can be expressed in propositional logic, like in:

("Java" AND NOT "island") OR ("C#" AND NOT "music")

Note that the challenges in full text search are different from database querying, like ranking of results.

History

[edit]
  • Trakhtenbrot 1950: failure of completeness theorem in first-order logic
  • Scholz 1952: characterisation of spectra in first-order logic
  • Fagin 1974: the set of all properties expressible in existential second-order logic is precisely the complexity class NP
  • Chandra, Harel 1979/80: fixed-point first-order logic extension for database query languages capable of expressing transitive closure -> queries as central objects of FMT
  • Immerman, Vardi 1982: fixed-point logic over ordered structures captures PTIME -> descriptive complexity (Immerman–Szelepcsényi theorem)
  • Ebbinghaus, Flum 1995: first comprehensive book "Finite Model Theory"
  • Abiteboul, Hull, Vianu 1995: book "Foundations of Databases"
  • Immerman 1999: book "Descriptive Complexity"
  • Kuper, Libkin, Paredaens 2000: book "Constraint Databases"
  • Darmstadt 2005/ Aachen 2006: first international workshops on "Algorithmic Model Theory"

Citations

[edit]
  1. ^ Ebbinghaus, Heinz-Dieter; Flum, J?rg (2006). Finite Model Theory (2nd ed.). Springer. pp. 62, 127–129.
  2. ^ Fagin, Ronald (1993). "Finite-model theory – a personal perspective". Theoretical Computer Science. 116: 3–31. doi:10.1016/0304-3975(93)90218-I.
  3. ^ Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. p. 6. ISBN 0-387-98600-6.
  4. ^ Grandjean, Etienne (1983). "Complexity of the first-order theory of almost all finite structures". Information and Control. 57 (2–3): 180–204. doi:10.1016/S0019-9958(83)80043-6.
  5. ^ Ebbinghaus, Heinz-Dieter; Flum, J?rg (1995). "4". Finite Model Theory. Perspectives in Mathematical Logic. doi:10.1007/978-3-662-03182-7. ISBN 978-3-662-03184-1.
  6. ^ Ebbinghaus, Heinz-Dieter; Flum, J?rg (1995). "7". Finite Model Theory. Perspectives in Mathematical Logic. doi:10.1007/978-3-662-03182-7.

References

[edit]
  • Fagin, Ronald (1976). "Probabilities on Finite Models". The Journal of Symbolic Logic. 41 (1): 50–58. doi:10.2307/2272945. JSTOR 2272945.
  • Glebski?, Yu V.; Kogan, D. I.; Liogon'ki?, M. I.; Talanov, V. A. (1969). "Объем и доля выполнимости формул узкого исчисления предикатов" [Volume and fraction of satisfiability of formulae of the first-order predicate calculus]. Kibernetika. 5 (2): 17–27. Also available as;"Range and degree of realizability of formulas in the restricted predicate calculus". Cybernetics. 5 (2): 142–154. 1972. doi:10.1007/BF01071084.
  • Libkin, Leonid (2004). Elements of Finite Model Theory. Springer. ISBN 3-540-21202-7.

Further reading

[edit]
[edit]
今年是什么生肖年 什么车最长 黄体破裂有什么症状 冬阴功汤是什么味道 凝视的近义词是什么
牛的本命佛是什么佛 孕前检查挂什么科室 白蛋白低是什么意思 尾牙是什么意思 胃功能四项检查是什么
大学院长是什么级别 什么鱼红烧好吃 小孩头疼吃什么药 刘彻是刘邦的什么人 什么血压计最准确
夏枯草长什么样子 甘露茶叶属于什么茶 胸痹是什么意思 满文军现在在干什么 今年83岁属什么生肖
百香果和什么搭配好喝hcv8jop4ns2r.cn 什么是低烧hcv9jop1ns5r.cn 做梦吃酒席什么预兆hcv9jop8ns0r.cn 逝者如斯夫是什么意思hcv9jop5ns1r.cn 肝外胆管扩张什么意思hcv9jop3ns7r.cn
collection什么牌子baiqunet.com 一人吃饱全家不饿是什么生肖hcv9jop6ns6r.cn 睾丸痛是什么原因gysmod.com 胃溃疡可以吃什么水果hcv8jop9ns2r.cn 鸡飞狗跳的意思是什么helloaicloud.com
什么水果养胃又治胃病hcv8jop6ns3r.cn pt是什么单位hcv7jop4ns8r.cn 风度是什么意思hcv9jop4ns3r.cn 为什么小腹隐隐作痛hcv9jop1ns4r.cn 驿马星是什么意思hcv8jop4ns1r.cn
松鼠吃什么食物hcv8jop8ns6r.cn 蚊子为什么不咬我hcv9jop4ns4r.cn 基尼系数是什么意思hcv9jop7ns3r.cn 化痰吃什么食物hcv8jop7ns6r.cn 皮上长小肉疙瘩是什么hcv9jop1ns4r.cn
百度